#P1806. 「To the Max」 最大的和

「To the Max」 最大的和

给定一个包含整数的二维矩阵,子矩形是位于整个阵列内的任何大小为1 * 1或更大的连续子阵列。

矩形的总和是该矩形中所有元素的总和。

在这个问题中,具有最大和的子矩形被称为最大子矩形。

例如,下列数组:

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 

其最大子矩形为:

9 2 
-4 1 
-1 8 

它拥有最大和15。

输入格式

输入中将包含一个N*N的整数数组。

第一行只输入一个整数N,表示方形二维数组的大小。

从第二行开始,输入由空格和换行符隔开的N2N^2个整数,它们即为二维数组中的N2N^2个元素,输入顺序从二维数组的第一行开始向下逐行输入,同一行数据从左向右逐个输入。

数组中的数字会保持在[-127,127]的范围内。

输出格式

输出一个整数,代表最大子矩形的总和。

数据范围

1N1001 \le N \le 100

输入样例:

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

输出样例:

15

来源

  • 《算法竞赛进阶指南》
  • acwing 可能含有视频讲解